Theory of time-resolved nonresonant x-ray scattering for imaging ultrafast coherent electron motion

نویسندگان

  • Gopal Dixit
  • Jan Malte Slowik
  • Robin Santra
چکیده

Future ultrafast x-ray light sources might image ultrafast coherent electron motion in real space and in real time. For a rigorous understanding of such an imaging experiment, we extend the theory of nonresonant x-ray scattering to the time domain. The role of energy resolution of the scattering detector is investigated in detail. We show that time-resolved nonresonant x-ray scattering with no energy resolution offers an opportunity to study time-dependent electronic correlations in nonequilibrium quantum systems. Furthermore, our theory presents a unified description of ultrafast x-ray scattering from electronic wave packets and the dynamical imaging of ultrafast dynamics using inelastic x-ray scattering by Abbamonte and co-workers. We examine closely the relation of the scattering signal and the linear density response of electronic wave packets. Finally, we demonstrate that time-resolved x-ray scattering from a crystal consisting of identical electronic wave packets recovers the instantaneous electron density.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.

Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wav...

متن کامل

Time-resolved X-Ray diffraction from coherent phonons during a laser-induced phase transition

Time-resolved x-ray diffraction with picosecond temporal resolution is used to observe scattering from impulsively generated coherent acoustic phonons in laser-excited InSb crystals. The observed frequencies and damping rates are in agreement with a model based on dynamical diffraction theory coupled to analytic solutions for the laser-induced strain profile. The results are consistent with a 1...

متن کامل

Ultrafast X-ray diffraction in liquid, solution and gas: present status and future prospects.

In recent years, the time-resolved X-ray diffraction technique has been established as an excellent tool for studying reaction dynamics and protein structural transitions with the aid of 100 ps X-ray pulses generated from third-generation synchrotrons. The forthcoming advent of the X-ray free-electron laser (XFEL) will bring a substantial improvement in pulse duration, photon flux and coherence...

متن کامل

Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...

متن کامل

Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction.

Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014